On the Integrity of Certain Fibonacci Sums

نویسندگان

  • Piero Filipponi
  • Marco Bucci
چکیده

[n is an arbitrary natural number, r is an arbitrary (nonzero) real quantity) gives & positive integer k. Since both r and k turn out to be Fibonacci number ratios, the results established in this paper can be viewed as a particular kind of Fibonacci identities that are believed to be new [see (4.7) and (4.8)]. Throughout the paper we shall make use of the following properties of the Fibonacci numbers and of the Lucas numbers Ln which are either available in [5] and [11] or can be readily derived by using the Binet forms for Fn and Ln: F2n=FnLn, (1.4) 5i?=/*-4(-l)\ (1.5) L2„-2(-l)" = 5Fn, (1.6) F„ divides Fk iff n divides k (for n>3), (1.7) L„ = Lk (mod 5) iff n = * (mod 4), (1.8) L„+k-(-l)Ln_k=5F„Fk, (1.9) A»*+(-i)*4-* = 4 4 0-io)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices

In this paper we consider certain generalizations of the well-known Fibonacci and Lucas numbers, the generalized Fibonacci and Lucas p-numbers. We give relationships between the generalized Fibonacci p-numbers, Fp(n), and their sums, Pn i1⁄41F pðiÞ, and the 1-factors of a class of bipartite graphs. Further we determine certain matrices whose permanents generate the Lucas p-numbers and their sum...

متن کامل

Families of Sequences From a Class of Multinomial Sums

In this paper we obtain formulas for certain sums of products involving multinomial coefficients and Fibonacci numbers. The sums studied here may be regarded as generalizations of the binomial transform of the sequence comprising the even-numbered terms of the Fibonacci sequence. The general formulas, involving both Fibonacci and Lucas numbers, give rise to infinite sequences that are parameter...

متن کامل

On Sums of Certain Products of Lucas Numbers

New results about certain sums Sn(k) of products of the Lucas numbers are derived. These sums are related to the generating function of the k-th powers of the Fibonacci numbers. The sums for Sn(k) are expressed by the binomial and the Fibonomial coefficients. Proofs of these formulas are based on a special inverse formula.

متن کامل

Combinatorial Representation of Generalized Fibonacci Numbers

New formull are presented which express various generalizations of Fibonacci numbers as simple sums of binomial and multinomial coeecients. The equalities are inferred from the special properties of the representations of the integers in certain numeration systems.

متن کامل

Alternating sums of reciprocal generalized Fibonacci numbers

ABSTRACT Recently Holliday and Komatsu extended the results of Ohtsuka and Nakamura on reciprocal sums of Fibonacci numbers to reciprocal sums of generalized Fibonacci numbers. The aim of this work is to give similar results for the alternating sums of reciprocals of the generalized Fibonacci numbers with indices in arithmetic progression. Finally we note our generalizations of some results of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992